3.45 \(\int \frac {\sinh (c+d x)}{(a+b \sinh ^2(c+d x))^2} \, dx\)

Optimal. Leaf size=81 \[ \frac {\cosh (c+d x)}{2 d (a-b) \left (a+b \cosh ^2(c+d x)-b\right )}+\frac {\tan ^{-1}\left (\frac {\sqrt {b} \cosh (c+d x)}{\sqrt {a-b}}\right )}{2 \sqrt {b} d (a-b)^{3/2}} \]

[Out]

1/2*cosh(d*x+c)/(a-b)/d/(a-b+b*cosh(d*x+c)^2)+1/2*arctan(cosh(d*x+c)*b^(1/2)/(a-b)^(1/2))/(a-b)^(3/2)/d/b^(1/2
)

________________________________________________________________________________________

Rubi [A]  time = 0.07, antiderivative size = 81, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {3186, 199, 205} \[ \frac {\cosh (c+d x)}{2 d (a-b) \left (a+b \cosh ^2(c+d x)-b\right )}+\frac {\tan ^{-1}\left (\frac {\sqrt {b} \cosh (c+d x)}{\sqrt {a-b}}\right )}{2 \sqrt {b} d (a-b)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[Sinh[c + d*x]/(a + b*Sinh[c + d*x]^2)^2,x]

[Out]

ArcTan[(Sqrt[b]*Cosh[c + d*x])/Sqrt[a - b]]/(2*(a - b)^(3/2)*Sqrt[b]*d) + Cosh[c + d*x]/(2*(a - b)*d*(a - b +
b*Cosh[c + d*x]^2))

Rule 199

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Simp[(x*(a + b*x^n)^(p + 1))/(a*n*(p + 1)), x] + Dist[(n*(p +
 1) + 1)/(a*n*(p + 1)), Int[(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[p, -1] && (In
tegerQ[2*p] || (n == 2 && IntegerQ[4*p]) || (n == 2 && IntegerQ[3*p]) || Denominator[p + 1/n] < Denominator[p]
)

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 3186

Int[sin[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.), x_Symbol] :> With[{ff = Free
Factors[Cos[e + f*x], x]}, -Dist[ff/f, Subst[Int[(1 - ff^2*x^2)^((m - 1)/2)*(a + b - b*ff^2*x^2)^p, x], x, Cos
[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2]

Rubi steps

\begin {align*} \int \frac {\sinh (c+d x)}{\left (a+b \sinh ^2(c+d x)\right )^2} \, dx &=\frac {\operatorname {Subst}\left (\int \frac {1}{\left (a-b+b x^2\right )^2} \, dx,x,\cosh (c+d x)\right )}{d}\\ &=\frac {\cosh (c+d x)}{2 (a-b) d \left (a-b+b \cosh ^2(c+d x)\right )}+\frac {\operatorname {Subst}\left (\int \frac {1}{a-b+b x^2} \, dx,x,\cosh (c+d x)\right )}{2 (a-b) d}\\ &=\frac {\tan ^{-1}\left (\frac {\sqrt {b} \cosh (c+d x)}{\sqrt {a-b}}\right )}{2 (a-b)^{3/2} \sqrt {b} d}+\frac {\cosh (c+d x)}{2 (a-b) d \left (a-b+b \cosh ^2(c+d x)\right )}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.34, size = 130, normalized size = 1.60 \[ \frac {\frac {2 \cosh (c+d x)}{(a-b) (2 a+b \cosh (2 (c+d x))-b)}+\frac {\tan ^{-1}\left (\frac {\sqrt {b}-i \sqrt {a} \tanh \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a-b}}\right )+\tan ^{-1}\left (\frac {\sqrt {b}+i \sqrt {a} \tanh \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a-b}}\right )}{\sqrt {b} (a-b)^{3/2}}}{2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sinh[c + d*x]/(a + b*Sinh[c + d*x]^2)^2,x]

[Out]

((ArcTan[(Sqrt[b] - I*Sqrt[a]*Tanh[(c + d*x)/2])/Sqrt[a - b]] + ArcTan[(Sqrt[b] + I*Sqrt[a]*Tanh[(c + d*x)/2])
/Sqrt[a - b]])/((a - b)^(3/2)*Sqrt[b]) + (2*Cosh[c + d*x])/((a - b)*(2*a - b + b*Cosh[2*(c + d*x)])))/(2*d)

________________________________________________________________________________________

fricas [B]  time = 0.60, size = 1628, normalized size = 20.10 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(d*x+c)/(a+b*sinh(d*x+c)^2)^2,x, algorithm="fricas")

[Out]

[1/4*(4*(a*b - b^2)*cosh(d*x + c)^3 + 12*(a*b - b^2)*cosh(d*x + c)*sinh(d*x + c)^2 + 4*(a*b - b^2)*sinh(d*x +
c)^3 + (b*cosh(d*x + c)^4 + 4*b*cosh(d*x + c)*sinh(d*x + c)^3 + b*sinh(d*x + c)^4 + 2*(2*a - b)*cosh(d*x + c)^
2 + 2*(3*b*cosh(d*x + c)^2 + 2*a - b)*sinh(d*x + c)^2 + 4*(b*cosh(d*x + c)^3 + (2*a - b)*cosh(d*x + c))*sinh(d
*x + c) + b)*sqrt(-a*b + b^2)*log((b*cosh(d*x + c)^4 + 4*b*cosh(d*x + c)*sinh(d*x + c)^3 + b*sinh(d*x + c)^4 -
 2*(2*a - 3*b)*cosh(d*x + c)^2 + 2*(3*b*cosh(d*x + c)^2 - 2*a + 3*b)*sinh(d*x + c)^2 + 4*(b*cosh(d*x + c)^3 -
(2*a - 3*b)*cosh(d*x + c))*sinh(d*x + c) + 4*(cosh(d*x + c)^3 + 3*cosh(d*x + c)*sinh(d*x + c)^2 + sinh(d*x + c
)^3 + (3*cosh(d*x + c)^2 + 1)*sinh(d*x + c) + cosh(d*x + c))*sqrt(-a*b + b^2) + b)/(b*cosh(d*x + c)^4 + 4*b*co
sh(d*x + c)*sinh(d*x + c)^3 + b*sinh(d*x + c)^4 + 2*(2*a - b)*cosh(d*x + c)^2 + 2*(3*b*cosh(d*x + c)^2 + 2*a -
 b)*sinh(d*x + c)^2 + 4*(b*cosh(d*x + c)^3 + (2*a - b)*cosh(d*x + c))*sinh(d*x + c) + b)) + 4*(a*b - b^2)*cosh
(d*x + c) + 4*(3*(a*b - b^2)*cosh(d*x + c)^2 + a*b - b^2)*sinh(d*x + c))/((a^2*b^2 - 2*a*b^3 + b^4)*d*cosh(d*x
 + c)^4 + 4*(a^2*b^2 - 2*a*b^3 + b^4)*d*cosh(d*x + c)*sinh(d*x + c)^3 + (a^2*b^2 - 2*a*b^3 + b^4)*d*sinh(d*x +
 c)^4 + 2*(2*a^3*b - 5*a^2*b^2 + 4*a*b^3 - b^4)*d*cosh(d*x + c)^2 + 2*(3*(a^2*b^2 - 2*a*b^3 + b^4)*d*cosh(d*x
+ c)^2 + (2*a^3*b - 5*a^2*b^2 + 4*a*b^3 - b^4)*d)*sinh(d*x + c)^2 + (a^2*b^2 - 2*a*b^3 + b^4)*d + 4*((a^2*b^2
- 2*a*b^3 + b^4)*d*cosh(d*x + c)^3 + (2*a^3*b - 5*a^2*b^2 + 4*a*b^3 - b^4)*d*cosh(d*x + c))*sinh(d*x + c)), 1/
2*(2*(a*b - b^2)*cosh(d*x + c)^3 + 6*(a*b - b^2)*cosh(d*x + c)*sinh(d*x + c)^2 + 2*(a*b - b^2)*sinh(d*x + c)^3
 + (b*cosh(d*x + c)^4 + 4*b*cosh(d*x + c)*sinh(d*x + c)^3 + b*sinh(d*x + c)^4 + 2*(2*a - b)*cosh(d*x + c)^2 +
2*(3*b*cosh(d*x + c)^2 + 2*a - b)*sinh(d*x + c)^2 + 4*(b*cosh(d*x + c)^3 + (2*a - b)*cosh(d*x + c))*sinh(d*x +
 c) + b)*sqrt(a*b - b^2)*arctan(-1/2*(b*cosh(d*x + c)^3 + 3*b*cosh(d*x + c)*sinh(d*x + c)^2 + b*sinh(d*x + c)^
3 + (4*a - 3*b)*cosh(d*x + c) + (3*b*cosh(d*x + c)^2 + 4*a - 3*b)*sinh(d*x + c))/sqrt(a*b - b^2)) - (b*cosh(d*
x + c)^4 + 4*b*cosh(d*x + c)*sinh(d*x + c)^3 + b*sinh(d*x + c)^4 + 2*(2*a - b)*cosh(d*x + c)^2 + 2*(3*b*cosh(d
*x + c)^2 + 2*a - b)*sinh(d*x + c)^2 + 4*(b*cosh(d*x + c)^3 + (2*a - b)*cosh(d*x + c))*sinh(d*x + c) + b)*sqrt
(a*b - b^2)*arctan(-1/2*sqrt(a*b - b^2)*(cosh(d*x + c) + sinh(d*x + c))/(a - b)) + 2*(a*b - b^2)*cosh(d*x + c)
 + 2*(3*(a*b - b^2)*cosh(d*x + c)^2 + a*b - b^2)*sinh(d*x + c))/((a^2*b^2 - 2*a*b^3 + b^4)*d*cosh(d*x + c)^4 +
 4*(a^2*b^2 - 2*a*b^3 + b^4)*d*cosh(d*x + c)*sinh(d*x + c)^3 + (a^2*b^2 - 2*a*b^3 + b^4)*d*sinh(d*x + c)^4 + 2
*(2*a^3*b - 5*a^2*b^2 + 4*a*b^3 - b^4)*d*cosh(d*x + c)^2 + 2*(3*(a^2*b^2 - 2*a*b^3 + b^4)*d*cosh(d*x + c)^2 +
(2*a^3*b - 5*a^2*b^2 + 4*a*b^3 - b^4)*d)*sinh(d*x + c)^2 + (a^2*b^2 - 2*a*b^3 + b^4)*d + 4*((a^2*b^2 - 2*a*b^3
 + b^4)*d*cosh(d*x + c)^3 + (2*a^3*b - 5*a^2*b^2 + 4*a*b^3 - b^4)*d*cosh(d*x + c))*sinh(d*x + c))]

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(d*x+c)/(a+b*sinh(d*x+c)^2)^2,x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Warn
ing, need to choose a branch for the root of a polynomial with parameters. This might be wrong.The choice was
done assuming [a,b]=[6,-20]Warning, need to choose a branch for the root of a polynomial with parameters. This
 might be wrong.The choice was done assuming [a,b]=[66,-29]Warning, need to choose a branch for the root of a
polynomial with parameters. This might be wrong.The choice was done assuming [a,b]=[-21,2]Warning, need to cho
ose a branch for the root of a polynomial with parameters. This might be wrong.The choice was done assuming [a
,b]=[15,2]Warning, need to choose a branch for the root of a polynomial with parameters. This might be wrong.T
he choice was done assuming [a,b]=[-45,5]Warning, need to choose a branch for the root of a polynomial with pa
rameters. This might be wrong.The choice was done assuming [a,b]=[89,-20]Undef/Unsigned Inf encountered in lim
itEvaluation time: 1.08Limit: Max order reached or unable to make series expansion Error: Bad Argument Value

________________________________________________________________________________________

maple [B]  time = 0.05, size = 256, normalized size = 3.16 \[ -\frac {\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}{d \left (\left (\tanh ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a -2 \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +4 \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +a \right ) \left (a -b \right )}+\frac {2 \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b}{d \left (\left (\tanh ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a -2 \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +4 \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +a \right ) \left (a -b \right ) a}+\frac {1}{d \left (\left (\tanh ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a -2 \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +4 \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +a \right ) \left (a -b \right )}+\frac {\arctan \left (\frac {2 \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a -2 a +4 b}{4 \sqrt {a b -b^{2}}}\right )}{2 d \left (a -b \right ) \sqrt {a b -b^{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sinh(d*x+c)/(a+b*sinh(d*x+c)^2)^2,x)

[Out]

-1/d/(tanh(1/2*d*x+1/2*c)^4*a-2*tanh(1/2*d*x+1/2*c)^2*a+4*tanh(1/2*d*x+1/2*c)^2*b+a)/(a-b)*tanh(1/2*d*x+1/2*c)
^2+2/d/(tanh(1/2*d*x+1/2*c)^4*a-2*tanh(1/2*d*x+1/2*c)^2*a+4*tanh(1/2*d*x+1/2*c)^2*b+a)/(a-b)/a*tanh(1/2*d*x+1/
2*c)^2*b+1/d/(tanh(1/2*d*x+1/2*c)^4*a-2*tanh(1/2*d*x+1/2*c)^2*a+4*tanh(1/2*d*x+1/2*c)^2*b+a)/(a-b)+1/2/d/(a-b)
/(a*b-b^2)^(1/2)*arctan(1/4*(2*tanh(1/2*d*x+1/2*c)^2*a-2*a+4*b)/(a*b-b^2)^(1/2))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {e^{\left (3 \, d x + 3 \, c\right )} + e^{\left (d x + c\right )}}{a b d - b^{2} d + {\left (a b d e^{\left (4 \, c\right )} - b^{2} d e^{\left (4 \, c\right )}\right )} e^{\left (4 \, d x\right )} + 2 \, {\left (2 \, a^{2} d e^{\left (2 \, c\right )} - 3 \, a b d e^{\left (2 \, c\right )} + b^{2} d e^{\left (2 \, c\right )}\right )} e^{\left (2 \, d x\right )}} + \frac {1}{2} \, \int \frac {2 \, {\left (e^{\left (3 \, d x + 3 \, c\right )} - e^{\left (d x + c\right )}\right )}}{a b - b^{2} + {\left (a b e^{\left (4 \, c\right )} - b^{2} e^{\left (4 \, c\right )}\right )} e^{\left (4 \, d x\right )} + 2 \, {\left (2 \, a^{2} e^{\left (2 \, c\right )} - 3 \, a b e^{\left (2 \, c\right )} + b^{2} e^{\left (2 \, c\right )}\right )} e^{\left (2 \, d x\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(d*x+c)/(a+b*sinh(d*x+c)^2)^2,x, algorithm="maxima")

[Out]

(e^(3*d*x + 3*c) + e^(d*x + c))/(a*b*d - b^2*d + (a*b*d*e^(4*c) - b^2*d*e^(4*c))*e^(4*d*x) + 2*(2*a^2*d*e^(2*c
) - 3*a*b*d*e^(2*c) + b^2*d*e^(2*c))*e^(2*d*x)) + 1/2*integrate(2*(e^(3*d*x + 3*c) - e^(d*x + c))/(a*b - b^2 +
 (a*b*e^(4*c) - b^2*e^(4*c))*e^(4*d*x) + 2*(2*a^2*e^(2*c) - 3*a*b*e^(2*c) + b^2*e^(2*c))*e^(2*d*x)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\mathrm {sinh}\left (c+d\,x\right )}{{\left (b\,{\mathrm {sinh}\left (c+d\,x\right )}^2+a\right )}^2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sinh(c + d*x)/(a + b*sinh(c + d*x)^2)^2,x)

[Out]

int(sinh(c + d*x)/(a + b*sinh(c + d*x)^2)^2, x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(d*x+c)/(a+b*sinh(d*x+c)**2)**2,x)

[Out]

Timed out

________________________________________________________________________________________